
Advanced Modelling and Verification Techniques
Applied to a Cluster File System

Charles Pecheur
RIACS / NASA Ames Research Center

MS 269-2, Moffett Field, CA 94035, USA

E-mail: pecheur@ptolemy.arc.nasa.gov

Abstract

This paper describes the application of advanced formal
modelling techniques and tools from the CADP toolset to
the verification of CFS, a distributed file system kernel. Af-
ter a short overview of the specification of CFS, we describe
the techniques used for model generation and verification,
and their application to CFS. Two original aspects are put
forth: firstly, the model is generated in a compositional way,
by putting together separately generated sub-components;
secondly, the extensible, data-aware temporal logic checker
XTL is used to express and verify properties of the system.
In particular, an XTL extension providing richer diagnos-
tics is presented.

Note This research was performed at and for INRIA
Rhône-Alpes, France, and is not connected to any RIACS
and NASA activity.

1 Introduction

The benefits of formal methods for the design of com-
plex distributed systems are now widely acknowledged.
Many formalisms, algorithms and tools have been proposed
for formally describing concurrent applications, expressing
their properties and automating their verification. Two main
approaches have been extensively studied: theorem proving
and model checking. The latter, while applicable only to
systems with a finite state space, offers the advantage of re-
quiring much less participation from the user.

One should not conclude that model checking reduces to
writing a specification and calling the checker, though. The
well-known state space explosion is always lurking, and
significant results only come out from the combination of
large computing resources, sophisticated tools and skilled
formal method experts.

This paper illustrates the use of advanced techniques for
the modelling and verification of CFS (Cluster File Sys-
tem) [5], a distributed file system built on top of the ARIAS

shared memory architecture [4]. Two original aspects are
put forth:

� the use of compositional model generation [8], in order
to produce a model that would have been impossible to
generate in a single step, and

� the use of the extensible temporal logic checker XTL

[20] and the development of an XTL extension provid-
ing richer diagnostics.

The rest of this first section gives a survey of the LO-
TOS specification language and tools which have been used
in this project. Section 2 presents the CFS system along
with its specification, Section 3 describes the compositional
technique used to generate a model from this specification,
and Section 4 discusses the verification task, including the
development of an extension for the XTL checker.

1.1 The LOTOS language and tools

The specification of CFS has been written in LOTOS, a
Formal Description Technique for the description and anal-
ysis of complex communication protocols and distributed
systems. LOTOS is a language standardized by ISO [15],
with a high abstraction level and a strong mathematical ba-
sis. It has been applied to many complex systems such
as network services and protocols [16, 19] but also cryp-
tographic protocols [18] or hardware architectures [2].

LOTOS consists of two “orthogonal” sub-languages: a
data part based on algebraic abstract data types and derived
from the ACT ONE specification language [3], and a con-
trol part based on a process algebra, combining the best
features of CCS [21] and CSP [14]. A system is modelled
as a collection of concurrent processes interacting by syn-
chronous rendez-vous, and those processes can manipulate

data values and exchange them through their interactions.
This paper does not show any LOTOS source code, so no
familiarity with the language is necessary. The interested
reader can find tutorials for LOTOS in the literature, e.g.
[1, 27].

The model (i.e. the meaning) of a LOTOS specification
is defined as the graph of all its possible actions (a Labelled
Transition System, or LTS). These graphs can be minimized
and compared according to different equivalence and refine-
ment criteria. In this study, we use observational equiva-
lence [21] for minimization, that is, we reduce models into
minimal observationally equivalent ones.

A number of tools have been developed for LOTOS, cov-
ering user needs in such various areas as edition, simulation,
compilation, test generation and formal verification. All the
work reported here has been done within the framework
of the EUCALYPTUS LOTOS Toolset [10], an X-Windows
based, user-friendly interface federating several comple-
mentary LOTOS tools from different sources. An impor-
tant part of EUCALYPTUS is the CÆSAR/ALDEBARAN De-
velopment Package (CADP) [7, 12], a leading edge tool-
box dedicated to the formal verification of distributed sys-
tems. CADP offers an integrated set of functionalities rang-
ing from interactive simulation to exhaustive, model-based
verification methods, and includes sophisticated approaches
to deal with large case-studies. In addition to LOTOS, it
also supports lower-level formalisms such as finite state ma-
chines and networks of communicating automata. The fol-
lowing CADP tools were mainly used in this application:

� CÆSAR [13] compiles a LOTOS program into its tran-
sition graph. The data part is translated into executable
C code, which is used to compute the graph [9].

� ALDEBARAN [6] is a verification tool for comparing
or minimizing graphs with respect to any of several
simulation and bisimulation relations.

� XTL [20] is a programmable temporal logic checker,
based on a specialized functional programming lan-
guage equipped with primitives for graph exploration.
Definitions of several well-known temporal logics
such as ACTL and the modal � -calculus are provided,
and new ones can easily be added. Further details
about XTL are given in Section 4.

CADP also provides OPEN/CÆSAR [11], an open pro-
gramming interface that separates the tasks of graph gen-
eration and graph exploration, allowing different applica-
tions (simulation, controlled execution, model checking) to
be applied to different formalisms (LOTOS programs, ex-
plicit graphs, networks of automata). It has been used here
to compose graphs of communicating processes together.

The APERO data type pre-processor [24] has also been
used to define most data types in the specification. This

compiler provides convenient concise syntax extensions for
declaring many common families of data structures such as
records, enumerations, sets, lists, as well as general ML-
style constructor declarations. APERO translates these dec-
larations into standard LOTOS type definitions, equipped
with all the usual associated operations (constructors, se-
lectors, equality, etc.). Besides reducing the size of data
type declarations, these notations are also much more read-
able, avoid the burden of algebraic definitions and hide the
technical complications needed to allow the compilation of
algebraic data type definitions.

2 Specification of CFS

2.1 Presentation of ARIAS and CFS

ARIAS [4] is a shared memory support system imple-
mented as an extension of IBM’s AIX operating system. It
provides a virtual memory among a set of machines, in such
a way that applications share a unique address space. Rather
than using a single coherence protocol that would be ex-
pensive and overly restrictive for most applications, ARIAS

allows such protocols to be plugged into the system as spe-
cialization modules according to the needs of specific appli-
cations, resulting in better performance. The ARIAS mem-
ory space is composed of fixed size blocks (called zones in
ARIAS) that are the smallest units of shared access.

The Cluster File System (CFS) [5] is a distributed file
system built on top of ARIAS, with the double purpose of
validating the ARIAS system itself and experimenting with
distributed applications that use shared files as a program-
ming paradigm. The resulting structure is illustrated in Fig-
ure 1, where the shaded areas are not covered by the LOTOS

specification.
Several file coherency protocols can co-exist, using dif-

ferent specialization modules. In practice, four coherency
protocols have been implemented in CFS. Among them,
the migratory protocol is designed to take full advantage of
the ARIAS system and stands out after the multiple bench-
marks described in [5]. The specification and verification
work presented here focuses on that protocol, which is re-
ferred to as the “CFS protocol” in the sequel. The CFS pro-
tocol relies on is the notion of mastership, inherited from
ARIAS: at any time, a master site owns the reference copy
of the block data. Mastership can move between sites dur-
ing the lifetime of the block; this accounts for much of the
flexibility offered by ARIAS.

2.2 Structure of the Specification

To perform model-based verification, we need to gener-
ate a model of finite and tractable size. This puts constraints
on the LOTOS specification: for example, the number of

Appl Appl

File I/O

protocol calls

generic part

CFS

read/write

coherency
protocol

CFS messages

ARIAS calls

local copy

ARIAS

local copy

shared virtual memory space

Figure 1. ARIAS and CFS

parallel processes must be statically bounded, and choices
over infinite ranges are forbidden. Furthermore, various pa-
rameters (data ranges, buffer sizes, etc.) are set to mini-
mal values to keep the size of the model within reachable
bounds.

The CFS protocol manages each block of memory inde-
pendently, so our LOTOS specification focuses on the man-
agement of a single block. Both the CFS protocol and the
ARIAS service that is used by this protocol are specified.
The size of the system is fixed to three sites: this is both
an imposed maximum w.r.t. state space explosion and a re-
quested minimum w.r.t. the coverage of possible scenarios
in the system (some interesting situations do not occur with
only two sites).

The complete specification is about 1000 lines long, and
is provided with an extended version of this article in [25].
Its structure is shown on Figure 2.

The CFS protocol is specified for a given site as a process
CFSProt with four connections: cfsreq and cfsans sup-
port calls from the applications, as request/answer pairs of
events, and send and rcv support emission and reception
of CFS protocol messages. The process Medium models
the transmission of these messages through the underlying
ARIAS system. For modelling purposes, the buffering ca-
pacity is limited to one message per sending site: Medium
is made of single-slot queues OutputQ, one per site. These
processes together constitute the CFSControl process, that
models correlation between CFS primitives for acquiring
and releasing access to a CFS block.

The process Memory models the memory management
part of ARIAS. It holds the local copies of the block at each
site and applies read and write events on them. It also
observes the CFS protocol messages and propagates master

OutputQ

CFSProtCFSProt

OutputQ

CFSProt

OutputQ

send rcv

read write

User User User

(site3)(site2)(site1)

cfsreq cfsans

(site1) (site2) (site3)

(site1) (site2) (site3)
Memory

Medium

CFSControl

CFSSystem

Figure 2. Structure of the LOTOS specifica-
tion of CFS

copies between sites accordingly. To complete the picture, a
process User for each site correlates memory accesses and
CFS calls, modelling the correct use of CFS synchronization
primitives: for example, write events are only allowed be-
tween beginwrite and endwrite CFS calls.

2.3 The CFS Protocol

The source CFS definition [5] describes the protocol in
terms of an input-output state automaton. For illustration,
Figure 3 shows the automaton corresponding to the spec-
ification: ! � (resp. ? �) stands for emission (resp. recep-
tion) of � , CFS calls are in bold (vs. CFS messages), and� ��� denotes a repetition of � . Deadlocks detected in early
models revealed several missing cases in the original de-
scription, drawn as dotted edges.

The definition of process CFSProt essentially captures
that automaton (several rounds of discussions with the de-
signers were needed to reach the level of accuracy needed
for formal specification). The state variables of the protocol
become parameters of CFSProt. The body of CFSProt is a
non-deterministic choice between reception of CFS requests
and messages, with infinite looping modelled by CFSProt

calling itself recursively.

3 Model Generation

The resulting LOTOS specification of CFS has a finite
model, but is too complex to be compiled in a monolithic
way using available tools and computers. Indeed, early at-
tempts on CFSControl alone produced a (essentially un-

Invalid

WaitWrite

WaitRead

Writing

Valid

Master

?Read !Read

?ReadRq

?WriteRq

?Invalidate

!WriteOK

?Invalidate

?Read

?BeginWrite

?Invalidate

?ReadOK

!Read

?Invalidate
?Read !Read

?BeginWrite

!WriteRq

?Invalidate

!WriteRq

?WriteOK

!BeginWrite
?EndWrite

?Invalidate

?ReadRq

!WriteOK

{!WriteRq}
{!ReadRq}

{!Invalidate}

{!ReadOK}
!EndWrite

{!Invalidate}
!BeginWrite?BeginWrite

!ReadOK

{!Invalidate}
!ReadRq

?WriteRq

Figure 3. State of a block in the CFS protocol

usable) model with 2.7 million states and 9.2 million tran-
sitions. Instead of this, we used a divide-and-conquer ap-
proach, compiling sub-components of the system separately
before combining them together, while minimizing each in-
termediate model before using it.

3.1 Tools for Compositional Model Generation

Compositional generation is provided by a tool
EXP.GEN that takes a description of a network of com-
municating automata (expressed in LOTOS-like syntax), the
graphs of these automata, and generates the graph for the
full network1. Using this tool, compositional generation is
obtained by:

� decomposing the whole system into parts of manage-
able size,

� generating the model for each part using CÆSAR, and
minimizing it (modulo observational equivalence) us-
ing ALDEBARAN,

� combining those models using EXP.GEN into mod-
els for increasingly large parts, while minimizing after
each step with ALDEBARAN, until obtaining the model
of the whole system.

The delicate part of compositional generation, however,
is to decide where to cut the whole system into separate
components and in which order to combine them. Indeed,
two interacting parts

����� �
generally strongly constrain each

other’s behaviour, and generating
�

or
�

separately can
produce a much larger graph than

����� �
itself, or even an

infinite one, thus compromising the approach.

1Technically, EXP.GEN uses OPEN/CÆSAR to combine EXP.OPEN,
which computes the graph for the network of automata, and GENERATOR,
which does the exhaustive graph generation.

To overcome this, a solution is to synchronize
�

with an
environment ��� , so that

����� ��� produces a smaller model
that can be substituted for

�
[17]. This is sound provided

that the substitution does not modify the global model, i.e.	 ����� � ��
 ��� �������� �
. In turn, this is guaranteed if � � is

a conservative approximation of the rest of the system as
seen from

�
, i.e. if � � allows all executions that

�
can go

through as part of the whole system.

3.2 Generation of a Model of CFS

From the specification depicted on Figure 2, the graph
for CFSSystem, modelling the management of a single CFS

block, has been generated compositionally, using environ-
ments to reduce the initial sizes of processes User and
OutputQ. Table 1 gives the sizes of the different compo-
nents and the generation and minimization times (in sec-
onds, on a Sun Ultra-1 workstation). Two derived models
have also been generated:

Abstract is CFSSystem where only gates read and
write remain visible. This gives a very abstract view
in terms of values read and written in memory, while
assuming (because of User processes) that CFS prim-
itives are called appropriately. The minimization of
Abstract takes more than 5 hours but results in a
small, highly symmetrical model with only 14 states.

Abstract2 consists of two concurrent instances of
Abstract, modelling read/write access to two dif-
ferent blocks. An “address” attribute is added to the
events of each instance to distinguish them. Since this
is a fully non-synchronized composition, we get the
worst case of state space explosion2. According to this,
combining two concurrent instances of CFSSystem in
a similar way would go far beyond available comput-
ing resources.

4 Verification

4.1 Overview of XTL

The properties of the CFS protocol have been expressed
and evaluated as temporal logic formulas, using the XTL

tool. Though primarily intended for evaluation of temporal
logic formulas, XTL is in full generality a compiler for a
functional language applied to a labelled transition system.
The XTL language is equipped with data types for states,
transitions and labels, and sets thereof, and functions for

2for � independent components, the number of states is ��������� �
and the number of transitions is ��������� ����� ��� � � � .

Table 1. Model generation statistics
process gen. min. #states #trans

Site || 5.0 0.1 75 130
EnvSite (���)

OutputQ || 4.5 � 0.1 13 30
EnvOutputQ (���)

Medium 3.8 3.1 2,197 15,210
CFSControl 8.0 7.9 11,031 34,728

User (���) 2.0 0.1 6 14
Memory 19.9 57.5 8 504

UserMemory 9.5 13.7 1,728 103,680
CFSSystem 1:57.7 2:39.7 66,324 350,532
Abstract – 5:07:53.2 14 90
Abstract2 2.9 2.7 196 2,520

manipulating them (e.g. initial state, incoming and outgo-
ing transitions of a state, source and target states of a transi-
tion). It can also do pattern matching on the labels of transi-
tions and thus access the individual attributes of structured
actions. For example, the following XTL expression com-
putes the set of all states that can take a transition on G with
integer attribute larger than 10:

{ S : state where
exists T : edge among out(S) where
T -> [G ?X : integer where X>10]

end_exists
}

Results are reported using a side-effect print function.
Temporal operators are defined as functions and/or macros
using these primitives; definitions for standard logics (e.g.
HML, ACTL, modal � -calculus) are provided as XTL li-
braries. ACTL [23], a variant of CTL applicable to labelled
transition systems, has been used here. The following four
primitive ACTL operators are used, for any set of events �
and formulas ���	� :

XTL syntax math syntax

EX A(
 , �) ������
AX A(
 , �) �� � �

EU A(� ,
 , �) ��� � ��� ���
AU A(� ,
 , �) ��� � ��� ���

Informally, ����� � (resp. !������) means some (resp. all)
path reaches � through an � step, and �#" �$��%&�(' (resp.!)" �*��%+�(') means some (resp. all) path stays in � through� steps until it reaches � . The following derived notations
are also used:

XTL syntax math syntax definition

Box(
 , �) �
��,� -�����.-#�
AG A(
 , �) ��/#�#� -���� 010�� � -#���
AG(�) ��/#� ��/32 24�

Intuitively, " �)'4� means � holds after all � , and !�5 � �
means � remains true through all � traces (through all
traces for !65��).

4.2 Generating diagnostics in XTL

The standard libraries provided with XTL evaluate tem-
poral formulas in a functional, bottom-up manner, by com-
puting the set of states that satisfies each sub-formula. For
example, the ��� � operator, whose semantics is

" ",��� � �(' ' � �87:99<; 7>=?3@ 7BA�C	DFE �HG 7BA#E " " �(' ' �
is defined in the standard XTL library as

def EX_A (A : labelset,
F : stateset) : stateset =

{ S : state where
exists T : edge among out(S) in

(label(T) among A) and
(target(T) among F)

end_exists
}

end_def

This approach gives a linear complexity w.r.t. the size of
the formula, but provides no justification of why the com-
puted states satisfy the formula. For example, when some
state

7
satisfies ������� , we would like to exhibit a transition7>=?I@ 7 A

where
D

is in � and
7 A

satisfies � .
We have developed an alternative version of the ACTL

library that produces explanations, as defined in [26]: the
evaluation of a temporal formula � on a state

7
� evaluates whether � holds on

7
, and

� prints out a trace from
7

that confirms the result when-
ever this makes sense.

The implementation relies on the availability of macros
in XTL. Formulas are turned into open boolean expressions
with a free variable CURRENT containing the current state,
and temporal operators into macros. For example, ��� � be-
comes

macro EX_A (A, F) =
if exists T : edge among out (CURRENT) in

(label(T) among A) and
(let CURRENT : state = target(T) in

(F)
end_let)

end_exists
then do(print(T), true)
else false
end_if

end_macro

Assuming CURRENT is some state
7
, T ranges over tran-

sitions
7 =?I@ 7 A

. If there is a T such that
D

is in A and
7 A

satisfies F, then it is printed as an explanation. The let

construct binds (a fresh incarnation of) CURRENT to
7 A

be-
fore evaluating F. do(� , �) performs action

D
then returns

� . The use of macros is essential: a function would evalu-
ate F in the calling context instead, losing the opportunity
to re-bind CURRENT.

Another macro implements �#" � � %:�(' . In summary, the
macro EU A(F,A,G) performs a breadth-first search from
CURRENT for a state that satisfies G through edges that match
F and A, and stores the search tree. When a successful state
is reached, it follows and prints a path through the search
tree from that state back to the start state. All other operators
can be defined in terms of (a slight generalization of) these
two macros.

The generation of diagnostics adds a cost, in both terms
of memory and time: since all operators are macros, for-
mulas expand into big XTL expressions, which can stretch
the XTL compiler to its limits. The linear complexity is
also lost: � nested EU A will produce � nested breadth-
first searches, with an exponential worst-case complexity
� 	����
 , where

�
is the size of the model. This is the price to

pay to obtain diagnostic traces within the current XTL im-
plementation. Things can be improved by pre-computing
sub-formulas that will never be traced, although this re-
quires a finer analysis from the user.

On the other hand, because everything gets expanded
into a single expression, bound variables can be used in
nested sub-formulas. This allows to capture and refer to
intermediate states in the exploration, and even more inter-
estingly to propagate attribute values, allowing to express
things such as “any message sent is eventually received”.
The verification of CFS below shows the usefulness of this
possibility.

4.3 Properties of CFS

Besides generic properties such as absence of deadlocks
and non-determinism, our verification work focuses on the
read/write coherency properties of the CFS protocol. These
properties are expressed in terms of events on gates read
and write.

We proceed in two steps. First the formulas are eval-
uated on the Abstract model, where only the concerned
gates are visible. The evaluation is fast since this model
is very small. However the diagnostic traces are not infor-
mative because all the inner workings of the protocol have
been abstracted. The interesting formulas are then evalu-
ated again, this time on the CFSSystem model. This takes
longer but provides fully detailed diagnostic traces.

Since there is no CFS call for ending a read session, it
was expected that the read/write coherency is rather loose.
This coherency was not formally expressed by the CFS pro-
tocol designers, though, so the work consisted as much in
determining the expected properties as in verifying them.

The following nine properties have been expressed and
evaluated (the outcome of the evaluation is shown in paren-
theses):

1. Global Liveness: there is no global deadlock (holds).

2. Determinism: no state has non-deterministic transi-
tions (fails).

3. Local liveness: at any time, all sites can eventually
read and write (holds).

4. Atomic coherency: if no write occurs inbetween,

4a. two different sites always read the same value
(fails).

4b. a single site always reads the same value (fails).

4c. if one site writes a value, another site will always
read that value afterwards (fails).

4d. if one site writes a value, the same site will al-
ways read that value afterwards (holds).

5. Propagation of values: assuming a fair execution, if
one site writes a value and no one writes inbetween, all
sites will eventually read that value afterwards (holds).

6. Sequential consistency: if one site writes a value, no
one writes inbetween, and another site reads that value,
it cannot read another value afterwards (holds).

Compilation and evaluation of all nine formulas on the
Abstract model takes 93 seconds of CPU time (on a Sun
Ultra-1). As expected, evaluation on the CFSSystem model
takes much longer: 273 seconds and 52490 seconds (more

than 14 hours) for properties 2 and 4b to report diagnostic
traces of length 32 and 21, respectively.

We use the possibility to bind and use attribute values to
express properties 4a to 4d, 5 and 6 in their full general-
ity, each as a single formula. For example, property 4a is
defined as

AG(
Box(READ ?S1:Site ?V1:Val,

AG_A(not(WRITE _ _),
Box(READ ?S2:Site ?V2:Val
where S1<>S2, V1=V2)

)))

where variables S1, V1, S2 and V2 are used to capture
and compare the sites and values of two consecutive READ
events. Without this possibility, we would have had to re-
peat the formula for all possible combinations of values of
these variables.

Let us now comment some evaluation results:

� Non-determinism is not a failure of the protocol but
rather a consequence of the abstraction level of its
LOTOS specification: diagnostic traces for property 2
show that the non-deterministic transitions correspond
to possible reception of the same message from two
different sources, a perfectly legal situation in the pro-
tocol.

� Failure of properties 4a, 4b and 4c is not surprising,
since this kind of atomic coherency is quite strong and
the protocol was known to have loose read synchro-
nization mechanisms.

� Property 6 is more characteristic of typical distributed
memory systems. It is related to the notion of sequen-
tial consistency [22], which requires that events in the
system are seen in the same order on all sites, though
the time scales can be stretched or shifted from one
site to another. In essence, property 6 captures the fact
that values are read in the order in which they are writ-
ten. This is even stronger than sequential consistency,
which would allow two unrelated writes on different
sites to be seen (at all sites) in the opposite order than
that in which they really occurred.

If several memory blocks are considered, however, se-
quential consistency does no longer hold. This is illustrated
on model Abstract2 using the following property:

7. If one site writes values in two different blocks in some
order (and no other write occurs inbetween), another
site cannot read the written value in the second block
then fail to read the written value in the first block af-
terwards.

Property 7 is implied by sequential consistency and is
not satisfied by Abstract2: intuitively, writes to different
blocks can propagate at different speeds. CFS is thus se-
quentially consistent at the block level but not at the file
level.

5 Conclusions

Although the specification of CFS has a modest size, it
produces excessively large models if processed in a straight-
forward manner. The modelling and verification work pre-
sented here illustrates how more advanced techniques can
be used to achieve significant results in such complex cases.

Strictly speaking, the restrictions and simplifications
needed to obtain a model of tractable size restrict the gener-
ality of the results we obtain. In this sense, model checking
can be considered as a (very powerful) debugger, that is, a
tool to find problems rather than prove their absence. Nev-
ertheless, verifying properties on small simplified models
still significantly improves the confidence that these proper-
ties hold in the general case.

Beyond the verification of the CFS protocol, this case
study has also demonstrated the practical applicability and
usefulness of two technologies for dealing with complex
specifications and supported by the CADP toolset:

� Using ALDEBARAN and OPEN/CÆSAR technology to
generate and compose models of different components
of the system, we have been able to build up a model
for a complete system that would have been impossible
to produce in a single generation.

� CFS properties have been expressed and evaluated us-
ing the XTL temporal logic checker, with two impor-
tant advantages. Firstly, XTL supports data, so that
properties about values exchanged in the system have
been conveniently expressed. Secondly, the XTL lan-
guage is extensible, so that we have been able to define
new temporal operators that produce execution traces
to illustrate their results.

6 Acknowledgements

This study has been carried in close collaboration with
both ARIAS/CFS developers and CADP tool designers. In
particular, we would like to mention Thierry Jacquin and
Daniel Hagimont on the former side, Hubert Garavel and
Radu Mateescu on the latter. Many thanks too to some of
them for their judicious comments on this text. Norman
Ramsey’s NOWEB literate programming system has been
used to write the LOTOS specification. AIX is a trademark
of IBM Corporation.

References

[1] T. Bolognesi and E. Brinksma. Introduction to the ISO Spec-
ification Language LOTOS. Computer Networks and ISDN
Systems, 14(1):25–29, Jan. 1988.

[2] G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zu-
lian. Specification and Verification of the PowerScale Bus
Arbitration Protocol: An Industrial Experiment with LO-
TOS. In R. Gotzhein and J. Bredereke, editors, Proceed-
ings of FORTE/PSTV’96 (Kaiserslautern, Germany), pages
435–450. IFIP, Chapman & Hall, Oct. 1996.

[3] J. de Meer, R. Roth, and S. Vuong. Introduction to Algebraic
Specifications Based on the Language ACT ONE. Computer
Networks and ISDN Systems, 23(5):363–392, 1992.

[4] P. Dechamboux, D. Hagimont, J. Mossière, and X. R.
de Pina. The Arias Distributed Shared Memory: an
Overview. In 23rd Intl Winter School on Current Trends in
Theory and Practice of Informatics, volume 1175 of Lecture
Notes in Computer Science, 1996.

[5] J.-P. Fassino. Utilisation d’une mémoire virtuelle répartie
pour le support d’un système de fichiers réparti. DEA thesis,
Université Joseph Fourier, Grenoble, June 1996.

[6] J.-C. Fernandez. ALDEBARAN: A Tool for Verification of
Communicating Processes. Rapport SPECTRE C14, Labo-
ratoire de Génie Informatique — Institut IMAG, Grenoble,
Sept. 1989.

[7] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Ma-
teescu, L. Mounier, and M. Sighireanu. CADP
(CÆSAR/ALDEBARAN Development Package): A Proto-
col Validation and Verification Toolbox. In R. Alur and T. A.
Henzinger, editors, Proceedings of CAV’96 (New Brunswick,
New Jersey, USA), volume 1102 of Lecture Notes in Com-
puter Science, pages 437–440. Springer Verlag, Aug. 1996.

[8] J.-C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic
Equivalence Checking. In C. Courcoubetis, editor, Proceed-
ings of CAV’93 (Heraklion, Greece), volume 697 of Lecture
Notes in Computer Science. Springer Verlag, June 1993.

[9] H. Garavel. Compilation of LOTOS Abstract Data Types. In
S. T. Vuong, editor, Proceedings of FORTE’89 (Vancouver
B.C., Canada), pages 147–162. North-Holland, Dec. 1989.

[10] H. Garavel. An Overview of the Eucalyptus Toolbox. In
Z. Brezočnik and T. Kapus, editors, Proceedings of the
COST 247 International Workshop on Applied Formal Meth-
ods in System Design (Maribor, Slovenia), pages 76–88.
University of Maribor, Slovenia, June 1996.

[11] H. Garavel. OPEN/CÆSAR: An Open Software Architec-
ture for Verification, Simulation, and Testing. In B. Stef-
fen, editor, Proceedings of TACAS’98 (Lisbon, Portugal),
volume 1384 of Lecture Notes in Computer Science, pages
68–84, Berlin, Mar. 1998. Springer Verlag.

[12] H. Garavel, M. Jorgensen, R. Mateescu, C. Pecheur,
M. Sighireanu, and B. Vivien. CADP’97 – Status, Appli-
cations and Perspectives. In I. Lovrek, editor, Proceedings
of the 2nd COST 247 International Workshop on Applied
Formal Methods in System Design (Zagreb, Croatia), June
1997.

[13] H. Garavel and J. Sifakis. Compilation and Verification
of LOTOS Specifications. In L. Logrippo, R. L. Probert,

and H. Ural, editors, Proceedings of PSTV’90 (Ottawa,
Canada), pages 379–394. IFIP, North-Holland, June 1990.

[14] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[15] ISO/IEC. LOTOS — A Formal Description Technique
Based on the Temporal Ordering of Observational Be-
haviour. International Standard 8807, International Orga-
nization for Standardization — Information Processing Sys-
tems — Open Systems Interconnection, Genève, Sept. 1988.

[16] ISO/IEC. LOTOS Description of the Session Protocol.
Technical Report 9572, International Organization for Stan-
dardization — Open Systems Interconnection, Genève,
1989.

[17] J.-P. Krimm and L. Mounier. Compositional State Space
Generation from Lotos Programs. In E. Brinksma, editor,
Proceedings of TACAS’97 (University of Twente, Enschede,
The Netherlands), volume 1217 of Lecture Notes in Com-
puter Science, Berlin, Apr. 1997. Springer Verlag.

[18] G. Leduc, O. Bonaventure, E. Koerner, L. Léonard,
C. Pecheur, and D. Zanetti. Specification and verification
of a TTP protocol for the conditional access to services. In
Proceedings of 12th J. Cartier Workshop, Montreal, Canada,
Oct. 1996.

[19] L. Léonard. The LOTOS Specification of the Enhanced
Transport Service. In The OSI95 Transport Service with
Multimedia Support, pages 239–244 and 398–515. Springer
Verlag, 1994.

[20] R. Mateescu. Vérification des propriétés temporelles des
programmes parallèles. Doctorate thesis, Institut National
Polytechnique de Grenoble, Apr. 1998.

[21] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[22] D. Mosberger. Memory Consistency Models. Operating
Systems Review, 27(1):18–26, 1993.

[23] R. D. Nicola and F. W. Vaandrager. Action versus State
based Logics for Transition Systems. In Proceedings Ecole
de Printemps on Semantics of Concurrency, volume 469
of Lecture Notes in Computer Science, pages 407–419.
Springer Verlag, 1990.

[24] C. Pecheur. Improving the Specification of Data Types in
LOTOS. Doctorate thesis, University of Liège, Nov. 1996.
Faculty of Applied Sciences, Pub. Coll. Nr 171.

[25] C. Pecheur. Advanced Modelling and Verification Tech-
niques Applied to a Cluster File System. Research Report
RR-3416, INRIA, Grenoble, May 1998.

[26] A. Rasse. Error diagnosis in finite state systems. In Proceed-
ings of CAV’91, volume 575 of Lecture Notes in Computer
Science. Springer Verlag, 1991.

[27] K. J. Turner, editor. Using Formal Description Techniques –
An Introduction to ESTELLE, LOTOS, and SDL. John Wiley,
1993.

